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Electroporation, in which electric pulses create transient pores in the cell membrane, is an important tech-
nique for drug and DNA delivery. Electroporation kinetics is mathematically described by an advection-
diffusion boundary value problem. This study uses singular perturbation to derive a reduced description of the
pore creation transient in the form of a single integrodifferential equation for the transmembrane voltage V�t�.
The number of pores and the distribution of their radii are computed from V�t�. The analysis contains two
nonstandard features: the use of the voltage deviation to peel away the strong exponential dependence of pore
creation upon the transmembrane potential, and the autonomous approximation of the pore evolution. Com-
paring the predictions of the reduced equation with the simulations of the original problem demonstrates that
this analysis allows one to predict with good accuracy the number and distribution of pores as a function of the
electric pulse strength.
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I. INTRODUCTION

Electroporation refers to the creation of water-filled pores
in the lipid bilayer of the cell membrane under the influence
of strong electric pulses. Electroporation can occur as a result
of power-line accidents �1� but it also has beneficial applica-
tions in biotechnology and medicine: because the pores re-
seal in the matter of seconds to minutes, electroporation is
used to deliver biologically active molecules, drugs or DNA,
into cells �2–4�. While electroporation-mediated DNA deliv-
ery emerges as a potential technique for nonviral gene
therapy, its effectiveness depends strongly and often unpre-
dictably on experimental factors. Thus, a better understand-
ing of the electroporation process, coming from mathemati-
cal modeling and analysis, would be very useful in
facilitating progress in practical applications of this tech-
nique.

Experimental and theoretical studies of electroporation re-
veal that it consists of a sequence of phases. Briefly, elec-
troporation starts with the application of an electric pulse that
charges the cell membrane �charging phase�. When the volt-
age difference across the membrane �i.e., transmembrane
voltage V� is sufficiently large �0.5–1 V, depending on the
cell type�, pores are created �creation transient�. Water-filled
hydrophilic pores are created with a radius r*�0.5 nm but
grow rapidly. The creation and growth of the pores decreases
the resistance of the membrane, first slowing the increase and
eventually decreasing the transmembrane voltage V. Once V
drops below the threshold value, the creation ceases and a
new phase starts, during which the existing pores expand in
order to relieve the tension of the membrane. This pore evo-
lution phase can lead to accumulation, in which a large num-
ber of pores assume the same radius, or to coarsening, in
which one pore grows to a giant size and the remaining pores
shrink and eventually reseal. For typical pulse strengths, the

pore evolution phase lasts a few milliseconds. After the pulse
is turned off, V drops to zero, causing the pores to shrink to
a radius of approximately 1 nm, although post-shock coars-
ening is also possible. This shrinkage phase is very fast �mi-
croseconds� and it is followed by the resealing phase, during
which the pores disappear and the integrity of the lipid bi-
layer is restored. Resealing takes seconds to minutes, de-
pending on the cell type and experimental conditions.

Electroporation presents rather peculiar challenges to the-
oretical analysis, both by numerical simulations and by sin-
gular perturbation analysis. Theoretically, the process of
electroporation is described by an advection-diffusion
boundary value problem �BVP�. Under conditions corre-
sponding to most practical applications, the BVP is stiff be-
cause of strong exponential dependence of the pore creation
rate upon the square of the transmembrane voltage: incre-
ments of V as small as 0.02 V can result in a threefold in-
crease in the pore creation rate. Thus, initial studies of elec-
troporation that involved direct numerical solution of this
BVP required very small spatial and temporal discretization
steps of 5 pm and 1 ps, respectively �5�. Consequently, these
early studies could investigate electroporation process for
only very short intervals, on the order of microseconds.
While it was sufficient for applications of electroporation
that involved ultrashort pulses, such as irreversible break-
down and rupture of the artificial lipid bilayers and biologi-
cal cells �5,6�, or reversible electroporation with a large num-
ber of small pores �7,8�, other applications, such as gene
delivery that require pulses on the order of milliseconds,
were beyond the reach of these methods. Our previous re-
search has asymptotically reduced the governing BVP to an
ordinary differential equation �ODE� for pore creation �9�
and a set of ODEs for the evolution of pore radii �10�. Using
ODEs avoids the necessity of solving a BVP, and the time
step needed for a convergent solution is 3–5 orders of mag-
nitude larger. This advance opened a possibility of studying
longer pulsing protocols associated with gene delivery �11�.

Nevertheless, simulations of electroporation that are
based on creating individual pores and tracking evolution of
their radii are expensive. In particular, during an early part of
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the creation transient, the number of pores and their radii
must be tracked very accurately, which requires small time
steps. Any errors in the number and distribution of pore radii
would propagate to the transmembrane voltage. As we have
just seen, small errors in V would be greatly amplified, re-
sulting in a large difference in the creation rate and, conse-
quently, the number of pores would be predicted incorrectly.
Singular perturbation analysis comes to mind as a standard
medicine for stiff problems and the prospect that it can pro-
duce reduced equations that accurately approximate the re-
sults of expensive simulations is tempting. The core content
of this paper is in fact a singular perturbation analysis whose
reduced equations still require numerical evaluation, albeit
much smaller and cheaper.

The limit process of this perturbation analysis is non-
standard. The first essential idea is to peel away the strong
exponential dependence of pore creation rate upon the trans-
membrane voltage V. Typically, the membrane rapidly
charges until the V reaches a threshold and then rapid pore
creation prevents V from increasing much beyond that value.
Thus, most of the creation happens within the narrow range
of transmembrane voltage. The narrowness of this voltage
range serves as the essential small parameter, �, and its value
is established by a standard scaling argument. Scaling units
of time, pore radius, and pore density are determined from
dominant balances applied to all the equations of the
advection-diffusion BVP.

The next step is to formulate the nondimensional version
of the advection-diffusion BVP, containing � as a gauge pa-
rameter. The �→0 asymptotic solution of the dimensionless
BVP exploits a second nonstandard idea. It turns out that the
evolution of pore radii during the creation transient is close
to autonomous: Specifically, there is an adaptive time vari-
able related to the physical time so that the growth rate of
pore radii relative to this adaptive time can be approximated
by a given function of radius, which has no explicit time
dependence. Within this autonomous approximation, it is
possible to reduce the full system of electroporation equa-
tions to a single integrodifferential equation for the trans-
membrane voltage, without further approximations. Once the
transmembrane voltage is known, other observables, such as
the pore density distribution and their effect on the mem-
brane resistance readily follow.

The analysis presented here focuses on the pore creation
transient. Section II is the mathematical formulation of elec-
troporation kinetics in the form of an advection-diffusion
boundary value problem. Section III determines the small
parameter �, and presents the dominant balance arguments
that yield the scaling units of time, pore radius, and pore
density. The nondimensional boundary value problem and its
parameters are presented in Sec. IV. Section V presents the
autonomous approximation, which reduces the full BVP to a
single integrodifferential equation for the transmembrane
voltage V�t�.

Section VI presents the derivation of this integrodifferen-
tial equation and the collateral determination of the pore
number and the pore radii distribution associated with it.
Finally, Sec. VIII compares the predictions of the asymptotic
formulas developed here with brute-force numerical simula-
tion of the pore creation process.

II. MATHEMATICAL FORMULATION OF THE KINETICS
OF ELECTROPORATION

The evolution of pores is described by an advection-
diffusion partial differential equation �PDE� �10�,

�tn + �r�Un − D�rn� = 0 in r � r*, �1�

where the dependent variable is n�r , t�, the pore density dis-
tribution, such that at a given time t, the number of pores
�per unit area� with radii between r and r+dr is n�r , t�dr. The
diffusion term, �r�D�rn�, describes random fluctuation of
pore radii caused by thermal energy; the value of the diffu-
sion coefficient D is given in Table I. The advection term,
�r�Un�, describes the changes in pore radii that are driven by
minimization of the energy of the bilayer �10�. The advection
velocity U is given by

U =
D

kT
� V2F

1 + rh/�r + rt�
+ 4�	 r*

r

41

r

− 2�� + 2��r� in r � r*, �2�

where the four terms correspond for the components of the
bilayer energy as follows: the first term accounts for the elec-
tric energy induced by the transmembrane voltage V �12�, the
second, for the steric repulsion of lipid heads �9�, the third,
for the line tension acting on the pore perimeter �13�, and the
fourth, for the surface tension of the surrounding membrane
�10�. The values of parameters F, rh, rt, �, and � are given in
Table I. In �2�, � is an effective surface tension of the mem-
brane,

� = �0 − 4���
r*

�

�r2ndr , �3�

where the second term shows that the presence of pores de-
creases the initial membrane tension �0. Equations �1�–�3�
can be considered as a nonlinear extension of the Smolu-
chowski equation introduced in the 1970s to describe the
behavior of pores �3,7,13�.

For the purpose of this study, we assume that pores are
created with the initial radius r* at a rate �e�V / Vep�2

per unit
area �9�, where constants � and Vep are given in Table I. In
absence of resealing, which is not relevant during the cre-
ation transient, we have

d

dt
�

r*

�

ndr = �e�V/Vep�2
. �4�

The theoretical basis for the exponential creation rate on
the right-hand side of �4� is explained in Ref. �7�. There is no
sharp threshold for pore creation: as expected from �4�, any
V	0 will create pores but weak pulses may require very
long time �14�. In practice, both in the model and in experi-
ments, one sees an apparently sharp increase in pore forma-
tion as V increases through a narrow range about “threshold”
voltage. In this model, the “threshold” voltage is well ap-
proximated by 4Vep=1.032 V, where Vep is the characteristic
voltage of electroporation given in Table I.
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From �4� and �1�, one can formulate a boundary condition
�BC� at r=r*,

�r�Un − D�rn��r*,t� = �e�V/Vep�2
. �5�

The initial condition �IC� is n�r ,0�0, which means that a
membrane has no pores before the electric pulse is applied.

To determine a unique solution for n�r , t�, the time evolu-
tion of the transmembrane voltage V�t� must be given. V is a
dynamical variable and its evolution depends on the experi-
mental setup. This study assumes the simplest experimental
setup: a uniformly polarized membrane, represented by the
capacitance C, resistance R, and by the current Ip through
electropores �Fig. 1�. The circuit of Fig. 1 can be interpreted
as an idealized representation of a depolarized �or hyperpo-
larized� “polar” region of a single cell exposed to an external
field �15� and the control parameter V0 can be interpreted as
the maximum transmembrane voltage induced in a cell by
the external electric field. Thus, the evolution equation for
the transmembrane voltage V is

RsC�tV = V0 − 	1 +
Rs

R

V − RsIp, �6�

where the combined current Ip through all pores is given by

Ip = VA�
r*

� n

Rp + Ri
dr = VAg�

r*

� 2�r2

2h + �r
ndr . �7�

This formula assumes that voltage drop V occurs across the
sum of the pore resistance, Rp=h / ��gr2�, and the input re-
sistance, Ri=1/ �2gr� �16�; parameters g and h are given in
Table I. The derivation of Eq. �6� ignores the rest potential,
Vrest, of the cell. To account for Vrest, V0 in �6� would have to
be replaced by V0+ �Rs /R� Vrest. Typically, Vrest=−0.08 V, so
�Rs /R�Vrest=2
10−5 V, i.e., negligible compared to V0,
which is on the order of 1 V. Consequently, �6� is used with
the initial condition V=0, which also ignores the rest poten-
tial of the cell.

In summary, the dynamics of pore density distribution
n�r , t� is determined by the advection-diffusion PDE �1�, the
creation BC �5�, and the voltage evolution equation �6�. Fur-
ther details and the rationale for this model of pore creation
and evolution can be found in our previous presentations
�9–12�.

III. CHOICE OF SCALING UNITS

Under pulsing protocols of practical relevance, nearly all
pores are created in a narrow range of the transmembrane
voltage, somewhat above 1 V �for parameters in Table I�.
Thus, it is convenient to describe pore creation using a rela-

TABLE I. Parameters of the electroporation model.a

Parameter Value
Nondimensional

valueb
Scaling

unit

�, creation rate coefficient 1
109 m−2 s−1

Vep, characteristic voltage of electroporation 0.258 V

r*, minimum radius of hydrophilic pores 0.5
10−9 m 0.03203 �r�
D, diffusion coefficient for pore radius 5
10−14 m2 s−1 3.679
10−4 �r�2 / �t�
�, steric repulsion energy 1.4
10−19 J 0.01203 Vr

2F �r�
�, edge energy 1.8
10−11 J m−1 0.02415 Vr

2F

�0, tension of the bilayer without pores 1
10−3 J m−2 0.02094 Vr
2F / �r�

��, tension of hydrocarbon-water interface 2
10−2 J m−2 0.4188 Vr
2F / �r�

F, max electric force for V=1 V 0.70
10−9 N V−2

rh, characteristic length for electric force 0.97
10−9 m 0.06214 �r�
rt, correction for toroidal pores 0.31
10−9 m 0.01986 �r�
Cm, surface capacitance of the membrane 10−2 F m−2

Rm, surface resistance of the membrane 0.5 � m2

A, total area of lipid bilayerc 1.26
10−9 m2

Rs, series resistanced 105 �

�, charging time constante 1.26
10−6 s 0.7009 �t�
g, conductivity of the solution �Tyrode’s� 2 S m−1

h, membrane thickness 5
10−9 m 0.3203 �r�
T, absolute temperature �37 °C� 310 K

aSources of all values are given in Ref. �11�.
bOnly for parameters appearing in reduced equations.
cAssuming spherical cell of a 10 m radius.
dChosen to give the charging time constant close to that of a cell.
eComputed as RsC=RsCmA.
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tive voltage deviation, v�V−Vr� /Vr, rather than its full
value V. As a reference voltage Vr, we choose the “thresh-
old” voltage, so that Vr=4Vep=1.032 V. Using v and Vr, the
creation exponential in �5� becomes

e�V/Vep�2
= e�Vr/Vep�2

exp�	 Vr

Vep

2

��1 + v�2 − 1�� .

Since �v��1, we approximate

e�V/Vep�2
� e�Vr/Vep�2

e2�Vr/Vep�2v.

The above approximation motivates the choice of the scaling
unit �v� for deviation v,

�v� = � 
1

2
	Vep

Vr

2

= 0.03125, �8�

as the value of v that increases the creation rate exponential
by a factor of e. For Vr=4Vep, �v��1, as assumed above.
The scale �v� also serves as a small parameter �. Using �8�,
the voltage deviation is converted to its nondimensional
form,

v =
1

�

V − Vr

Vr
. �9�

The scaling units �t�, �r�, and �n� of time, pore radius, and
pore density, are determined by the three dominant balances
that follow from the basic equations �1�, �4�, and �6�. First,
the advection velocity associated with the PDE �1� is U,
defined in �2�. The electrical component is expected to domi-
nate in the pore creation transient, so the dominant balance
associated with �1� is

�r�
�t�

=
DVr

2F

kT
. �10�

Second, the dominant balance associated with the creation
identity �4� is

�n��r�
�t�

= �e�Vr/Vep�2
. �11�

Finally, we will develop the dominant balance associated
with the voltage evolution equation �6�. Recognizing that
Rs /R=2.4
10−5 is small compared to one, we drop this
term and, introducing the definition of Ip �7�, we obtain

RsC�tV = V0 − V − RsVAg�
r*

� 2�r2

2h + �r
ndr . �12�

Here, V0−V can be estimated from �8� as 2�v�=Vep
2 /Vr, and

the order of magnitude of the integral in �12� is �r�2�n�.
Hence, the dominant balance of terms on the right-hand side
of �12� is

Vep
2

Vr
= RsVrAg�r�2�n� or 	Vep

Vr

2

= RsAg�r�2�n� . �13�

From the three dominant balance equations �10�, �11�, and
�13�, we determine �r�, �t�, and �n�,

�r� =� DVep
2 F

kT�RsAg
e−�1/2��Vr/Vep�2

= 1.56 
 10−8 m, �14�

�t� =
kT�r�
DVr

2F
= 1.79 
 10−6 s, �15�

�n� =
��t�
�r�

e�Vr/Vep�2
= 1.02 
 1018 m−3. �16�

IV. NONDIMENSIONAL EQUATIONS AND
PARAMETERS

The nondimensional equations contain nondimensional
versions of the parameters. Their values, together with the
scaling units, are given in columns 3 and 4 of Table I. The
nondimensional effective tension � is

� = �0 − 4���
r*

�

r2ndr , �17�

where nondimensional parameter �r�3�n� arises from
scaling of the integral. The ratio 4�� /�0 measures the de-
crease in tension due to pores relative to the tension of intact
bilayer. Its value is 3.1
10−4, indicating that during creation
transient, the effect of the pores on the membrane tension is
negligible.

The nondimensional version of the advection-diffusion
PDE �1� is

�tn + �r�Un − D�rn� = 0 in r 	 r*, �18�

and the nondimensional version of the creation BC �5� is

FIG. 1. Circuit representation of a uniformly polarized mem-
brane of the surface area A. The capacitor C=CmA represents the
total capacitance of the membrane and the constant resistor R
=Rm /A accounts for the flow of current through channel proteins
�surface capacitance Cm and surface resistance Rm are given in
Table I�. The variable resistor accounts for the dynamically chang-
ing current through pores, Ip. The resistor Rs represents the series
resistance of the experimental setup and V0 is the external stimulus.
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�r�Un − D�rn��r*,t� = e��1 + �v�2−1�/�2��. �19�

In the limit �→0, the right-hand side of �19� asymptotes to
the �-independent limit ev, which is the essential point of the
unit �v� in �8�.

A preliminary form of the nondimensional voltage evolu-
tion equation �6� is

���tv = ��v0 − v� − RsAg�r�2�n��1 + �v��
r*

� 2�r2

2h + �r
ndr .

Here, v0 is the nondimensional voltage deviation correspond-
ing to V0, computed from �9�, and � is the nondimensional
charging time constant from Table I. By the third dominant
balance �13�, RsAg�r�2�n�=2� and there is a cancellation of
�, leaving

��tv = �v0 − v� − 2�1 + �v��
r*

� 2�r2

2h + �r
ndr . �20�

V. REDUCED DYNAMICS

The scaled values of many parameters in Table I are con-
spicuously small. The nondimensional diffusion coefficient
D is the smallest, so henceforth we will neglect diffusion
terms in the PDE �18� and BC �19�. The diffusionless ver-
sions of �18� and �19� are

�tn + �r�Un� = 0 in r 	 r*, �21�

�Un��r*,t� = e�v+�v2/2��t�, �22�

where U is the nondimensional advection velocity,

U =
�1 + �v�2

1 + rh/�r + rt�
+ 4�	 r*

r

41

r
− 2�� + 2��r . �23�

Equations �21� and �22� subject to the IC n�r ,0�0 in r
�r* is an advection signaling problem.

This advection velocity can be further reduced. Consider-
ing the smallness of parameters rh, rt, �, �, and �, �column 3
of Table I� one might expect U to be close to the uniform
value of 1. However, Fig. 2 demonstrates that such an ap-

proximation is not acceptable. Instead, the asymptotic reduc-
tion of U will be based on an autonomous approximation.
Note that the explicit time dependence of U comes from only
two sources: the integral term in the effective tension � �17�
and the factor �1+�v�2 in the electrical component of U. The
former is expected to be a weak effect, due to the smallness
of the ratio 4�� /�0, and the time dependent � can be re-
placed by the constant �0. The latter can be absorbed by
renormalization of time. Introduce in place of time t the
adaptive time � so that

d�

dt
= �1 + �v�2.

Regarding v=v��� as a function of �, the relation between t
and � is

t = �
0

� d��

�1 + �v�����2 . �24�

With the adaptive time, problem �21� and �22� is converted
into a signaling problem for n�r ,��,

��n + �r	 U

�1 + �v�2n
 = 0 in r 	 r*, �25�

	 U

�1 + �v�2n
�r*,�� = 	 ev+�v2/2

�1 + �v�2
��� . �26�

The renormalized advection velocity appearing in �25� and
�26� is

U

�1 + �v�2 =
1

1 + rh/�r + rt�
+

1

�1 + �V�2�4�	 r*

r

41

r
− 2��

+ 2��0r� . �27�

The first term on the right-hand side is the dominant electric
component, independent of �. Explicit � dependence is con-
fined to the remaining steric, line, and area components.
They are already small compared to the electric component,
so the effect of the explicit � dependence in �v is reduced.
Hence, the renormalized advection velocity �27� is replaced
by the autonomous approximation U0,

U0 =
1

1 + rh/�r + rt�
+ 4�	 r*

r

41

r
− 2�� + 2��0r . �28�

VI. INTEGRODIFFERENTIAL INITIAL VALUE PROBLEM
FOR VOLTAGE DEVIATION

In this section we shall show that with the autonomous
approximation �28� of the advection velocity, the full prob-
lem for n�r , t� and v�r� reduces to a single integrodifferential
initial value problem �IVP� for v���. First, multiply the PDE
�25� by U0 to obtain

���U0n� + U0�r�U0n� = 0. �29�

Note that multiplication by U0 commutes with �� because
U0=U0�r� is independent of �. It follows from �29� that U0n

FIG. 2. Advection velocity as a function of the pore radius. The
solid line shows the advection velocity computed from �23�, assum-
ing �=0 and �=�0; the dashed line is a constant-value approxima-
tion U1. Both pore radius and advection velocity are
nondimensional.
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is constant along integral curves of the ODE,

dr

d�
= U0�r� . �30�

Denote the solution of �30� with r�0�=r* by r=R���. R��� is
the evolution of the first pore radius in renormalized time �.
More generally, the solution of �30� with r����=r* is r
=R��−��� for ����.

Since U0n is constant along r=R��−���, �U0n��R��
−��� ,��= �U0n��r* ,���. Thus, the BC �26� with U / �1+�v�2

replaced by U0 implies

�U0n��R�� − ���,�� = 	 ev+�v2/2

�1 + �v�2
���� . �31�

Equation �31� determines n�r ,�� on its support S: �	0, 0
�r�R���. The procedure is illustrated in Fig. 3. Take �r ,��
in S; determine �� as a function of �r ,�� by inverting r
=R��−��� to obtain T�r�=�−�� so that ��=�−T�r�. Using
T�r�, �31� determines n�r ,�� as

n�r,�� =
1

U0�r�
	 ev+�v2/2

�1 + �v�2
�� − T�r�� . �32�

Now we turn to the voltage evolution equation �20�. Us-
ing the renormalized time � and n�r ,�� from �32�, we obtain

��1 + �v�2dv
d�

= v0 − v − 2�1 + �v��
r*

R��� 2�r2

2h + �r


	 ev+�v2/2

�1 + �v�2
�� − T�r��
dr

U0�r�
. �33�

We change the variable of integration from r to ��=�−T�r�.
We have r=R��−���, so that r=R��� implies ��=0, and r
=r* implies ��=�. Furthermore, since r=R��−���,

dr =
dR

d�
�� − ����− d��� = −

dR

d�
�T�r��d�� = − U0�r�d��.

Hence, the transformed version of �33�,

��1 + �v�2dv
d�

= v0 − v − 2�1 + �v��
0

� 2�R2�� − ���
2h + �R�� − ���


	 ev+�v2/2

�1 + �v�2
����d��, �34�

constitutes the integrodifferential equation for v���.
Given the solution for v���, the pore density distribution

follows from �32�. The total pore density N���
�r*

� n�r ,��dr has �-rate of change,

dN

d�
= �

r*

�

��nd� = − �
r*

�

�r	 U

�1 + �v�2n
dr = 	 ev+�v2/2

�1 + �v�2
��� ,

as follows from �25� and �26�. Hence, we obtain

N��� = �
0

� ev+�v2/2

�1 + �v�2d� . �35�

The relation �24� between t and � can be used to convert v, n,
and N from functions of � to functions of t.

VII. IGNITING ELECTROPORATION AND AN
EFFECTIVE INITIAL CONDITION ON THE VOLTAGE

The initial value of the voltage is V�0�=0, and this corre-
sponds to a large, negative value of the dimensionless volt-
age deviation v�0�=−1/�. This value cannot be used as an
IC for �34�: the coefficient of the derivative on the left-hand
side would become zero. It reflects the breakdown of the
relation �24� between t and � when one tries to impose
v�0�=−1/�. An alternative, effective IC is derived.

First, we recognize that as long as the deviation v�t� re-
mains large and negative, the rate of pore creation, propor-
tional to e�v+�v2/2�, is exponentially small, and the current Ip is
negligible. In this case, the solution for V�t� reflects pure RC
charging,

V�t� = V0�1 − e−t/�� . �36�

In terms of the nondimensional voltage deviation v, �36�
reads

v�t� = v0 −
1

�
�1 + �v0�e−t/� �37�

in which all parameters are nondimensional �column 3 of
Table I�.

If the pulse strength V0 is significantly less than the ref-
erence voltage Vr, then RC charging goes to completion with
V approaching V0, and the deviation v remains large and
negative. For these V0, no significant pore creation is ex-
pected to occur.

If V0 is close to or above Vr, the pure RC charging breaks
down when V approaches Vr, signaling the ignition of sig-
nificant pore creation. The time t1 and voltage v1 of ignition
is estimated by requiring that at times t� t1, the pore density
N�t� should amount to less than one pore �hence subscript 1�.
The calculation of t1 and v1 proceeds as follows: From �21�
and �22�, nondimensional pore density N�t� increases at the
rate

FIG. 3. Support S of the pore density distribution n�r ,��. Left
boundary is the vertical line corresponding to r*, the smallest radius
of all pores. Bottom-right boundary is the trajectory R��� of the first
pore, created at �=0. A pore created at time �� has at the later time
� radius r=R��−���.
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�tN = ev�t�+�v2�t�/2. �38�

Taking the limit �→0, substituting into �38� the Taylor’s
expansion of the preignition approximation �37� for v�t�, and
integrating from t=0 to t1, one finds an estimate of N�t1�,

N�t1� =
�

v0 − v1
ev1.

This nondimensional pore density is converted into the ex-
pected pore number by multiplying by �n��r�A. Hence, the
condition that the expected number of pores be no more than
one at time t1 is

�n��r�A
�

v0 − v1
ev1 � 1. �39�

In simulations, we compute v1 from �39� and determine t1
from �37� as

t1 = � ln
1 + �v0

��v0 − v1�
. �40�

For t	 t1, the voltage deviation v is computed as the so-
lution of the integrodifferential equation �34� subject to IC
v��=0�=v1 and converting v��� to v�t� using

t − t1 = �
0

� d��

�1 + �v�����2 . �41�

VIII. COMPARISON OF THE SOLUTIONS TO THE
REDUCED AND ORIGINAL PROBLEMS

The solution to the reduced problem was computed nu-
merically by integrating Eq. �34� for v�t� and Eq. �30� for
R�t� using Euler method. Simultaneously, integrals �35� for N
and �24� for t were evaluated using the rectangular rule. The
initial condition for voltage, v1, was determined by finding
the root of �39� using Newton’s method; the initial time t1
was computed from �40�. At a prescribed time t, the pore
density distribution n�r , t� was computed from �32�. The time
step was 1 ns. All calculations were performed in nondimen-
sional variables and the final results were converted into di-
mensional variables.

The solution to the original problem was computed as
described in our previous presentations �10,11�. Briefly, the
PDE �1� for n�r , t� was reduced to a first order advection
PDE by eliminating the diffusion term, and the method of
characteristics was used to derive ODEs for the evolution of
individual pore radii. The resulting set of ODEs, as well as
equations for voltage V and pore density N were solved nu-
merically using a midpoint method. By launching individual
pores as they were created, the program attempted to repro-
duce in silico the electroporation process occurring in a
membrane. At a prescribed time t, the pore density distribu-
tion was determined by dividing the range of pore radii into
50 bins and counting the number of pores in each bin. The
same time step of 1 ns was used for all calculations.

Figure 4 shows the results of the original and the reduced
problems for the pulse strength of 1.5 V. Panels �a�–�c� show

that the voltage, the number of pores, and the radius of the
first pore are computed very accurately during the creation
transient and even a little beyond. Likewise, the distribution
of pore radii is captured with good accuracy �panel �d�, thick
lines�. At later times, the solution to the reduced problem
deteriorates. The most affected is the distribution of pore
radii: because the tension coupling of pores was eliminated
in the reduced problem �i.e., � was replaced by �0�, the
reduced equations predict larger pores �maximum at 8.1 nm�
than the original equations �maximum at 5.5 nm�. Larger
pores imply larger membrane conductance, which leads to a
smaller voltage in panel �a�.

Figure 5 shows the reference voltage Vr, evaluated from
�14�, in relation to voltages occurring during creation tran-
sient. V1, at which pore creation begins, Vpeak, the maximum

FIG. 4. Comparison of results obtained from the original prob-
lem �dashed lines� and from the asymptotic approximation �solid
lines�. �a� Transmembrane voltage, �b� number of pores, and �c�
radius of the first pore are shown as functions of time. Vertical lines
in panels �a�–�c� indicate the end of the creation transient, t
=2.6 s, when the relative increase in pore density N per time step
drops below 10−6. �d� Distributions of pore radii are shown at the
end of creation transient �thick lines� and at t=8 s �thin lines�.
Pulse strength V0=1.5 V.

FIG. 5. Characteristic values of voltage during pore creation
transient as a function of the pulse strength V0. The dashed hori-
zontal line is the reference voltage Vr evaluated from �14�; V1 is the
dimensional value of voltage at which pore creation begins; Vpeak is
the maximum voltage during creation transient; and Vend �dotted
line� is the voltage at which creation ends.
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voltage during creation transient, and Vend, at which creation
ends, all increase with the pulse strength but remain in close
proximity of Vr. Thus, as assumed in Sec. III, pores are cre-
ated in a narrow range of voltages near Vr and voltage de-
viation v is indeed small compared to Vr.

Table II lists differences between the two solutions for
pulse strengths V0=1–4 V. V0=1 V is the lowest value at
which electroporation is observed in the model; V0=4 V cor-
responds to a polarization of a 10 m spherical cell by an
electric field of 2.7 kV/cm, which exceeds typical fields
used in drug and DNA delivery �4�. Simulations were run
until the end of the creation transient �column 2�, i.e., until
the relative increase in pore density N per time step dropped
below 10−6. The table shows that the integrodifferential
equation predicts v�t� with remarkable accuracy: the relative
difference between the two solutions is below 1%. The pre-
dictions of the number of pores and of the pore radii are less
accurate but the difference between the solutions is confined
to a few percent. The distribution of pores is the most sensi-
tive to the approximations, especially at higher pulse
strengths. Large root mean square error usually results from
a slight shift of the two distributions in radius r, as seen in
Fig. 4�d� �thick lines�. The shape of the distribution is repro-
duced quite well, as indicated by the large values of the
correlation coefficient.

IX. DISCUSSION

This study uses singular perturbation to reduce an
advection-diffusion boundary value problem, traditionally
used to describe electroporation, to a single integrodifferen-
tial equation for the transmembrane voltage V�t�. Once V�t�
is known, the number of pores and the distribution of their
radii are computed by evaluating simple integrals. The analy-
sis contains two nonstandard features: the use of the voltage
deviation to peel away the strong exponential dependence of
pore creation upon the transmembrane potential, and the au-

tonomous approximation of the pore evolution.
The replacement of the renormalized advection velocity

�27� by the autonomous approximation �28� is the only ap-
proximation made in deriving the integrodifferential equation
�34� for v. If the steric, line, and surface terms are absent
�i.e., parameters �, �, and � are set to zero� then there is no
approximation and �34� is exact. In this sense, we are per-
turbing about the solution for purely electric force. The ra-
tionale is that during the pore creation transient, the electrical
force is dominant, typically by a factor of 5–10.

The autonomous approximation used here is not the pro-
cess �→0: several occurrences of the small parameter � re-
main in �34�. In the �→0 limit, the renormalized time �
becomes identical to t, and the integrodifferential equation
�34� becomes

�
dv
dt

= v0 − v − 2�
0

t 2�R2�t − t��
2h + �R�t − t��

ev�t��dt�. �42�

This only superficially simplifies �34� as it still requires com-
puting the solution numerically and the additional terms in
�34� do not really make the computations harder. Hence, in
practice the limit equation �42� has no real simplicity advan-
tage over �34�. However, it has a noticeable effect on the
accuracy. For a pulse strength V0=1.5 V, Eq. �42� predicts
28.4% more pores with the first pore that is 10% smaller.

Even though the reduced problem determines only the
creation transient, its ability to predict with good accuracy
the number and distribution of pores for a given pulse
strength can be applied in practice. In typical brute-force
numerical simulations of electroporation, a disproportionate
time is spent on the creation transient because a very small
initial time step is needed to resolve rapid changes in V and
N. Once the pores are created and N levels off, the time step
can be increased and thus the pore evolution phase is com-
putationally less demanding.

The reduced method has potential for speeding up the
calculations. First, the RC charging phase, during which the

TABLE II. Differencesa between solutions of the reduced and original problems. Labels: V0, pulse strength in V. End, time of the end of
creation transient in s �also duration of the simulation�. CC, correlation coefficient. RMSE, root mean square error relative to root mean
square value. Speed, execution time of the reduced problem relative to the original problem.

V0 End

Relative difference in Pore distribution

SpeedVoltage Pore number First radius CC RMSE

1.0 12.4 0.00246 0.0686 0.0108 b b 30.3

1.2 4.83 0.00241 0.0341 0.0024 0.9868 0.1033 3.64

1.5 2.60 0.00762 0.0300 0.0310 0.9954 0.0979 0.342

1.7 2.02 0.00909 0.0134 0.0419 0.9961 0.0902 0.149

2.0 1.53 0.00849 0.0135 0.0502 0.9979 0.0650 0.0398

2.5 1.10 0.00857 0.0478 0.0570 0.9981 0.0579 0.0148

3.0 0.86 0.00654 0.0708 0.0546 0.9934 0.1023 0.00850

3.5 0.71 0.00634 0.0872 0.0509 0.9844 0.1547 0.00481

4.0 0.61 0.00893 0.0999 0.0503 0.9766 0.1894 0.00209

aCalculated at the end of the creation transient, shown in the second column.
bToo few pores to meaningfully compare distributions.
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time step must be small to resolve V, can be bypassed alto-
gether: the analysis allows one to estimate time t1 when the
creation of pores starts, and supplies the analytical solution
for the preignition V�t�. The creation transient can also be
computed more efficiently using the reduced method. As
seen in the last column of Table II, the time savings are
especially visible at higher pulse strengths, when a large
number of pores are created and they must be followed in-
dividually in the original method. At low strengths, when
very few pores are created but creation transients are long,
the reduced method takes longer time. For example, the 1 V
pulse requires 12.4 s to create 14 pores. In this case, the
reduced method is considerably slower because of the need
to compute the convolution integral in �34�. The time saving
starts at V0=1.4, when the pores number is in the thousands.

In comparing the computation speeds, note that no at-
tempt was made to optimize the programs. In particular, the
convolution integral in �34� can be computed using one of
the fast algorithms �17�, resulting in even larger time sav-
ings.

This paper concentrates on presenting a method of simu-
lating the creation transient, which is the first phase of the

electroporation process. To generate results that can be
meaningfully compared to experiments, the model presented
here can be combined with the model of later phases of elec-
troporation �e.g., Ref. �10��. Such a combination would offer
both substantial time savings and increase the accuracy of
predicting the number of pores created by the pulse. As dis-
cussed in the Introduction, the accurate computation of the
number of pores is difficult to obtain by purely numerical
methods, yet it is a prerequisite for accurate evaluation of the
pore distribution and transport through pores that is done in
simulating later phases of electroporation. Thus, the method
developed here may provide ground work for models that are
capable of both qualitative and quantitative agreement with
experiments and are efficient enough to investigate such
problems of practical importance, like the dependence of
drug and DNA uptake on pulsing parameters, temperature,
and composition of the buffer solution.
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